Theoretical Studies of the EPR Parameters and the Local Structure of the Tetragonal Fe⁺ Center in KTaO₃

Shao-Yi Wu^{a,b}, Hui-Ning Dong^{b,c}, and Xiu-Ying Gao^a

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- ^c College of Electronic Engineering, Chongqing, University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi_wu@163.com

Z. Naturforsch. **60a**, 101 – 105 (2005); received November 3, 2004

The EPR parameters (zero-field splitting D and g factors g_{\parallel} and g_{\perp}) and the local structure for the tetragonal Fe⁺ center in KTaO₃ are theoretically studied by using the perturbation formulas of the EPR parameters for a 3d⁷ ion in tetragonally distorted dodecahedra. Based on these studies, we find that the impurity Fe⁺ may not locate on the regular dodecahedral K⁺ site but suffer a large off-center displacement ΔZ (≈ 0.43 Å) along one of the $\langle 100 \rangle$ (or C_4) axes, which is responsible for the large tetragonal distortion of the impurity center. The displacement ΔZ obtained in this work is comparable with that (≈ 0.46 Å) of a similar monovalent Li⁺ on K⁺ site of KTaO₃ obtained from the nuclear quadrupole shift and can be regarded as reasonable. The calculated g factors, particularly the anisotropy Δg (= $g_{\perp} - g_{\parallel}$) based on the above displacement, agree with the observed values.

Key words: Defect Structures; Electron Paramagnetic Resonance (EPR); Crystal- and Ligand-fields; Fe^+ ; $KTaO_3$